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Abstract: A new optimization method was applied to the crashworthiness optimization design of the longi-
tudinal beam of a domestic vehicle using a combination of Uniform Design, Finite Element Method, Artifi-
cial Neural Network and Genetic Algorithm. The finite element model of the longitudinal beam was built in 
Hypermesh, and validated by a sled crash test. According to the requirement of crashworthiness of longitudi-
nal beam, the energy absorption, weight and maximum impact force were chosen as the optimization objects, 
and the plate thickness of 4 parts of the longitudinal beam were chosen as the design variables. The variable 
samples were attained by uniform design, and then calculated by LS-DYNA. A nonlinear mapping was built 
from design variables to optimization objects with artificial neural network. The mapping was optimized by 
genetic algorithm to obtain a most appropriate thickness compounding that is presented in the paper. The 
methodology used in the study show good capability of multi-parameters optimization. 

Keywords: longitudinal beam; crashworthiness; artificial neural network; genetic algorithm; optimization 
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1. Introduction 

In recent years, many kinds of optimization methods and 
approximate models have been used in research projects 
about vehicle structure crashworthiness. 

Zhang et al. [1] used a method using a multi-objective 
optimization based on stepwise regression model which 
was applied for the optimization design of the reinforced 
members of a vehicle. Yamazaki et al. [2] did a research 
on crashworthiness optimization of tubular structure. The 
approximate model was built using response surface 
method in the design space, which was built by orthogo-
nal design of experiment, and then optimized with usual 
mathematical programming technique. Shi et al. [3] did a 
research on the technology to search all local optimiza-
tion design points in the feasible space. They also built 
an accurate approximate model by holographic neural 
network. Chen [4] developed a practical optimization 
method of structure crashworthiness using genetic algo-
rithm with global search capacity, and the instability of 
finite element method were considered. 

As we can conclude from the literature review, widely 
used orthogonal design of experiment whose factor lev-
els are strictly limited could hardly build a design space 
for factors with multi-levels, but according to the authors 
opinion uniform design could disperse them evenly. Re-
sponse surface model could approximate mapping of few 

parameters of low orders with high accuracy, but it also 
may lead to pseudo-fitting model when the basic func-
tion or the number of order is inappropriate in multi- 
parameters approximation. This problem can be solved 
using the artificial neural network that can achieve 
nonlinear approximation with any number of input pa-
rameters and output objects, which is the common re-
quirement in engineering field. 

Therefore, the authors used in the study a multi- pa-
rameters optimization method of vehicle body structure 
with uniform design, finite element method, artificial 
neural network and genetic algorithm, which was applied 
in optimization design of the longitudinal beam of a do-
mestic vehicle regarding crashworthiness. 

2. Optimization Method 

The process of the optimization method proposed in the 
paper is shown in Figure 1. Major steps of this process 
are as follows: 

(a) Determination of the optimization objects accord-
ing to requirements of collision safety, and selecting op-
timal parameters and its range considering the limits of 
packaging, load conditions and manufacturing process of 
vehicle body parts. 

(b) Dispersing the optimal parameters in the design 
space using uniform design. In order to improve the 
model accuracy, more artificial dispersed samples could 
be added appropriately. 

National “863 Program” (2006AA110101), the MOE & SAFEA of the 
P.R. China “111 program” (111-2-11), the MOF “ZQ Project”
(2007-237), Hunan University SKLVB (60870004). 

(c) Simulation of dispersed samples with finite ele-
ment method. 
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(d) Training the neural network according to the cal-
culating results of finite element method, evaluating the 
network by the mean square error. This error is opti-
mized by changing the number of hidden layer units until 
it meets the established accuracy. 

 

 
Figure 1. The process of optimization 

 
(e) Testing the neural network model which meets the 

requirement of the mean square error, improving the ac-
curacy from predictive to actual value by changing the 
initial weights until the network meets the requirement. 

(f) Considering requirements and regulations of each 
object, gaining the objective function to be optimized by 
weighted combination of multiple targets. 

(g) Global optimization of the objective function using 
genetic algorithm.  

(h) Validation of the obtained optimal results by finite 
element method simulation. 

3. Crashworthiness Optimization Design of 
Longitudinal Beam 

3.1. Problem Description 

In the car collision, impact kinetic energy should be ab-
sorbed by the front compartment of vehicle body to re-
duce the impact on passengers. The energy absorption 
capacity of longitudinal beam that is the main absorbing 
component in this compartment is the most important 
measurement of this structure. The maximum impact 
force on the longitudinal beam in the collision process is 
also an important factor to be considered. Lowering the 
maximum impact force can effectively reduce the maxi-
mum acceleration value of the vehicle in the collision, 
thus reducing the damage suffered by the passengers [5]. 

Vehicle lightening is one of the most fundamental ways 
to save energy and improve fuel economy. According to 
statistics, the fuel consumption can be reduced by 6% to 
8% when 10% of vehicle weight is reduced [6]. Therefore, 
the energy absorption capacity, maximum impact force, 
and the weight of longitudinal beam are three main fac-
tors to be considered in structure optimization. 

The model to be optimized is the front part of the lon-
gitudinal beam from a domestic vehicle, and its structure 
is shown in Figure 2. 

 

 
Figure 2. Structure of the longitudinal beam 

 
The total length of the longitudinal beam is 470 mm, 

width transversal section is 76 mm and the height is 120 
mm. The inside and outside plates are connected by 
flanging spot-weld, while front and rear parts by tai-
lor-weld. The length of front part is 250 mm with thick-
ness of 1.8 mm; the rear part’s length is 220 mm with 
thickness of 2.2 mm. There are three plates on the rear 
part to enhance stiffness.  

The size of longitudinal beam should fit suspension 
system and engine installation, therefore only the sheet 
thickness, material, and some minor details of this struc-
ture could be optimized. Several laboratory tests per-
formed in connection to the study show that changing the 
thickness of the metal sheet influences the deformation 
modes, energy absorption and maximum impact force 
strongly.  

The authors attempt to obtain a most optimal combi-
nation of plate thickness of the longitudinal beam’s four 
main parts considering the requirements of energy ab-
sorption, maximum impact force and weight. 

3.2. FE Model Used in the Study 

The finite element model of longitudinal beam used in 
optimization mounted on the sled was built in Hyper-
mesh according to the real sled. The whole model was 
meshed with 4 or 3 nodes shell elements. The element 
basic size of sled is 50 mm, and 5 mm of longitudinal 
beam. The material of front part of the beam is B340/ 
DP590, and the rear part is SAPH440. The tailor-weld is 
simulated with coinciding nodes, and the flanging 
spot-weld of inside and outside plates is simulated by 
solid spot-weld elements with the size of 6.5×6.5 mm 
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according to its actual number and locations. Consider-
ing that the sled has no deformation in the collision, the 
rigid material type MAT20 was chosen. The contact be-
tween rigid wall and longitudinal beam was defined with 
a friction coefficient of 0.6. The automatic single surface 
was chosen as the contact type of longitudinal beam, 
friction coefficient is 0.2. Mass elements were added to 
simulate the counterweight and data acquisition device to 
make the total weight and the location of centre of grav-

ity of simulated model consistent with real test equip-
ment. Because the total energy of the model is very large 
due to high speed of 50 km/h therefore two assisting en-
ergy absorption tubes were added on both sides of the 
longitudinal beam to avoid the sled hitting the rigid wall 
when the beam was completely crushed or instability of 
the sled. The gravity acceleration in all simulations is set 
to 9.8 m/s2. The test equipment and finite element model 
is shown in Figure 3. 

 

 
Figure 3. Rail-sled test and simulation model 

 
In order to validate the finite element model, a test of 

the longitudinal beam mounted on the sled was per-
formed in the Laboratory of Automotive Safety Crash in 
Hunan University under completely the same boundary 
conditions.  

The comparison of deformation between test and 
simulation after collision is shown in Figure 4. 

 

 
Figure 4. Deformation comparison between test and simulation 
 

It shows that the similarity of deformation mode 
and final form between test and simulation is quite high. 

Generally, the acceleration time history curve is 
used to verifying the accuracy of FE model. The model is 
considered to be correct when the difference between test 
and simulation is within 20% [7]. The acceleration time 

history curves of sled test and simulation are shown in 
Figure 5.  

The coincidence of the two curves is very high with 
the same collision duration, almost the same number of 
peaks and little difference between them. Therefore the 
model was approved for our study. 

 

 
Figure 5. Acceleration curves of test and simulation 

 

3.3. Optimization Design Space 

According to the problem description in the paragraph 
3.1, the energy absorption (E), weight (m) and maximum 
impact force (F) were chosen as the optimization objects, 
and the thickness of front outside plate (t1), front inside 
plate (t2), rear outside plate (t3), rear inside plate (t4) 
were chosen as the variables for optimization, see Figure 
2 for details. 

The range of variables determined by engineering 
practice is shown in Table 1. 
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Table 1. Range of optimal variables 

variables t1 [mm] t2 [mm] t3 [mm] t4 [mm] 

upper 1.2 1.2 1.6 1.6 

lower 2.4 2.4 2.8 2.8 

 

3.4. Acquisition of Training Samples 

Uniform design was used to disperse the samples with 
multi-levels. Uniform design [8] was first proposed by 
Chinese mathematicians Fang and Wang in 1978. This 
method is efficient to solve problems with 
multi-variables and multi-levels and commonly used in 
recent years. The experimental points are uniformly dis-
persed within the design space; therefore a more com-
prehensive understanding of the object could be ob-
tained. 

The uniform design disperses samples through a care-
fully designed table. Each uniform design table has a 
code named Un(q

s) or Un*(qs), where U means uniform 
design, n is the number of tests, q is the number of each 
factor’s levels, s is the columns of the table. Un(q

s) and 
Un*(qs) are two different type of uniform design table, 
Generally Un*(qs) has better uniformity, which should be 
chosen firstly, but Un(q

s) could arrange more factors. 
When the number of factors is too large to be arranged in 
Un*(qs), the Un(q

s) can be used. Each uniform design 
table has an additional table, which indicates how we 
choose the appropriate columns and the deviation of the 
test program formed by those columns. 

In order to examine the various factors fully within the 
scope of design space, 25 levels of each factor were 
taken into simulation. We choose the uniform design 
table of U25*(2511), deviation of the uniform design is D 
= 0.1210. 

After dispersing the samples, the finite element mod-
els of each test were built with Hypermesh and simulated 
with LS-DYNA. The experimental design program and 
simulation results are shown in Table 2. 

Aim to provide the neural network a sufficient number 
of training samples to ensure precision, 40 samples were 
artificially added from additional simulations with 
LS-DYNA of randomly selected samples. Due to the 
limited space, no details would be listed here. The 50 
samples in all the 65 groups were used to train the net-
work, and the remaining 15 samples were used to test the 
accuracy of the network. 

3.5. Training and Testing of the Neural Network 

Artificial Neural Network (ANN) is a kind of network 
system, which is interconnected with a large number of 
simple units [9]. Neural network has many network mod-
els, such as BP network, RBF network and so on. The 
BP network used in the study is a multi-layer network 
using Widrow-Hoff  learning algorithm and nonlinear 
differentiable transfer function. It is suitable for predic-

tion, pattern recognition and nonlinear function ap-
proximation. 

 
Table 2. Experimental design and simulation results 

 
t1 

[mm]
t2 

[mm]
t3 

[mm] 
t4 

[mm] 
F 

[kN] 
E 

[kJ] 
m 

[kg]

1 1.4 1.5 2.0 2.8 94.45 34.90 3.04

2 1.65 1.85 2.45 2.75 131.33 36.89 3.33

3 1.9 2.2 1.6 2.7 180.18 35.41 3.32

4 2.15 1.25 2.05 2.65 118.99 33.75 3.13

5 2.4 1.6 2.5 2.6 148.77 36.90 3.42

6 1.35 1.95 1.65 2.55 141.84 34.47 3.02

7 1.6 2.3 2.1 2.5 195.12 39.01 3.31

8 1.85 1.35 2.55 2.45 123.46 35.35 3.13

9 2.1 1.7 1.7 2.4 137.43 34.68 3.11

10 2.35 2.05 2.15 2.35 161.62 36.56 3.4

11 1.3 2.4 2.6 2.3 177.48 38.55 3.31

12 1.55 1.45 1.75 2.25 110.37 30.82 2.82

13 1.8 1.8 2.2 2.2 140.61 35.45 3.11

14 2.05 2.15 2.65 2.15 159.37 37.43 3.4

15 2.3 1.2 1.8 2.1 129.2 29.54 2.91

16 1.25 1.55 2.25 2.05 99.86 30.60 2.82

17 1.5 1.9 2.7 2.0 131.75 35.57 3.11

18 1.75 2.25 1.85 1.95 175.46 29.63 3.1

19 2.0 1.3 2.3 1.9 132.61 32.46 2.91

20 2.25 1.65 2.75 1.85 143.7 34.18 3.2

21 1.2 2.0 1.9 1.8 150.66 29.58 2.8

22 1.45 2.35 2.35 1.75 152.64 31.08 3.09

23 1.7 1.4 2.8 1.7 125.97 31.62 2.9

24 1.95 1.75 1.95 1.65 160.44 23.33 2.89

25 2.2 2.1 2.4 1.6 138.07 29.52 3.18

 
BP net work consists of the input layer, hidden layer, 

output layer and weights of node connection between the 
layers. Input layer accepts the input signals that are 
weighted and passes them to the hidden layer, and then 
hidden layer nodes weighted and removed these signals’ 
threshold and pass them to the output layer. The transfer 
function of hidden layer is tansig, and purelin of output 
layer. To ensure the convergence of the simulation, the 
sample data is normalized so that all input and output 
data is in [0, 1]. 

There are four input parameters in the optimization 
design, namely X4×1= [t1, t2, t3, t4]T, and three output 
parameters namely A3×1=[E(X), M(X), F(X)]T. A BP net-
work model was built with three layers, namely 4×n×3, 
where n is the number of hidden layer nodes. There is no 
theoretical guidance of the number of hidden layer nodes, 
but we can obtain the number with minimum network 
mean square error (MSE) by a group of testing calcula-
tion. The MSE of the neural network is an important 
criterion to measure the accuracy of the network which is 
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defined as Eq (1) below: 

2

1 1

1
(

N P

ij ij
j i

MSE t o
NP  

  )            (1) 

Where 
N — training set of samples 
P — number of network output units 
tij — true value of output from i unit when input 

sample is j 
oij — predictive value of output from i unit when in-

put sample is j 
The change of MSE is shown as Figure 6 when the 

number of hidden layer nodes changes from 7 to 18. 
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Figure 6. Change of MSE with number of hidden nodes 

 
The MSE reaches a minimum value of 0.178 when the 

number of hidden layer nodes is sixteen; therefore we 
built a 4×16×3 BP neural network. 

Using the neural network toolbox in Matlab, the net-
work was trained by calling the train function with col-
lected samples. The network was tested with 15 samples, 
and training it again by changing the initial nodes weight 
until the network meets precision requirement. The final 
test results from the training of neural network in com-
parison to those from LS-DYNA simulations are shown 
in Figure 7. It should be mentioned here that all the val-
ues on vertical axis had been normalized already.  

It can be seen from the test results that the neural net-
work model prediction and the finite element calculation 
results are consistent in trend. The difference between 
prediction and calculation are very small, where the dif-
ference in energy absorption is 4.5%, maximum impact 
force is 6.3%, and weight is 1.3%. Considering the insta-
bility of finite element method, the accuracy requirement 
of the model had been met. A 3×1 implicit function ma-
trix A has been obtained, namely A=sim(net, X). 

Then the corresponding optimization objects are 
E(X)=[1, 0, 0]A, M(X)=[0, 1, 0]A, F(X)=[0, 0, 1]A. 

3.6. Constructing the Objective Function 

Multi-objective problem was simplified to a single ob-
jective problem by weighted method. The objective 

function O(X) was constructed as shown in Eq. (2): 

1 2 3( ) ( ) ( ) ( )O X E X M X F X             (2) 

where X is the design variable, namely the thickness of 
four parts in the longitudinal beam; E(X) is the energy 
absorption; M(X) is the weight; F(X) is the maximum 
impact force; λ1, λ2 and λ3 is the weight coefficient of 
each object. 
 

 

 

 
Figure 7. Test results of the neural network 

 
The objective function described with matrix form in 

Matlab is shown as Eq. (3): 

1 1 1 2 3 3 1[ , , ]O A              (3) 

The energy absorption of original design was 34.54 kJ, 
and it should be increased in the optimal design, there-
fore it is required that E ≥ 34.54 kJ.  

The results of several tests performed in connection to 
the study show that the peak acceleration during the col-
lision is generally less than 25 g, and the weight of sled 
with all equipments is 1024 kg. According to the New-
ton’ second law, it can be calculated that the maximum 
impact force should satisfy: Fmax ≤ 250kN. 

The aim of optimization is to increase the energy ab-
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sorption as much as possible in the case of limited in-
crease of the weight and impact force. Considering all of 
the factors, λ1 = 0.7, λ2 = - 0.2, λ3 = - 0.1 was selected. 

Therefore the optimization problem can be described 
as follows: 

Max              [0.7, 0.2, 0.1]O A  
s.t.              ( ) 250F X 

( ) 34.54E X   
1.2 1 2.4t   
1.2 2 2.4t   
1.6 3 2.8t   
1.6 4 2.8t   

3.7. Global Optimization with Genetic Algorithm 

Genetic Algorithm (GA) is an adaptive global probabil-
istic search algorithm deriving from biological science in 
genetics and evolutionary processes of the natural envi-
ronment [10]. Practical application shows that GA is a 
good global optimal search algorithm which has a strong 
search capabilities and the ability to solve problems. It 
also has features of simple and robust, and is suitable for 
parallel processing, which don’t need gradient calcula-
tion process. 

The objective function was optimized using genetic 
algorithm toolbox in Matlab. The design variables were 
coded with real number. The initial population size is 
M=50, crossover probability is Pc=0.8, mutation prob-
ability is Pm=0.01, and the number of generations is 2000. 
In the optimization we used the objective function itself 
as the fitness function. 

The optimal solution of design variables obtained by 
GA are t1 = 1.587, t2 = 2.212, t3 = 2.077, t4 = 2.573. In 
practical engineering applications, we can take t1 = 1.6 
mm, t2 = 2.2 mm, t3 = 2.0 mm, t4 = 2.6 mm. 

The thicknesses selected above were used in final 
LS-DYNA simulation to verify the effect of optimization 
(opt). These results are compared with results from 
simulation of original design (org) are shown in Table 3. 

 
Table 3. Comparison between original and optimal design 

 
t1 

[mm] 
t2 

[mm] 
t3 

[mm] 
t4 

[mm]
E 

[kJ] 
m 

[kg] 
F 

[kN] 

org 1.8 1.8 2.2 2.2 34.54 3.11 164.72

opt 1.6 2.2 2.0 2.6 38.74 3.28 170.3 

Imp - - - - +12.2% +5.5% +3.4%

 
It can be seen from the comparison results that the en-

ergy absorption of the optimal design has significantly 
increased with limited increase of the weight and maxi-
mum impact force. The optimization purpose was 
achieved. 

In engineering practice, the object and its importance 
in study is usually not certain, the methodology used in 
he study can easily be applied for various needs of op-

timization. These needs can be expressed easily by 
modification of the weight coefficients of the objective 
function. 

4. Conclusions 

The design optimization of crashworthiness of the longi-
tudinal beam was evaluated by combination of uniform 
design, finite element method, artificial neural network 
and genetic algorithm. The optimal combination of plate 
thicknesses of four parts was obtained. The advantages 
of this methodology are: uniform design can disperse 
multilevel samples, neural network model can gain the 
nonlinear mapping from multi-parameter to multi- target, 
and the genetic algorithm can take global optimization to 
established neural network model. Compared to tradi-
tional optimization methods, this method is more consis-
tent with the requirements in engineering field; It can be 
used for multi-parameter optimization of automotive 
structure. 
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